Techniques of Digital Holography For Microscopy and Metrology

International Workshop on Holographic Memories and Display Nov. 15-16, 2010, University of Tokyo, Japn

M.K. Paul Kim, Professor

Digital Holography and Microscopy Laboratory

Dept. of Physics

University of South Florida

Tampa, FL 33647 mkkim@usf.edu

Digital Holography & Microscopy Laboratory

NSF

DHML: Digital Holography and Microscopy Laboratory

- James Gass
- Aaron Dakof
- Dan Parshall
- □ Lingfeng Yu Zeiss
- Chris Mann Eugene Wigner Fellow, ORNL
- Alejandro Rostrepo Colombia National U (visiting)
- Kaveh Azartash UC Irvine (visiting)
- Nilanthi Warnasooriya Texas A&M
- Alex Khmaladze U Michigan, Ann Arbor
- Mariana Potcoava U Colorado, Boulder / JILA
- Leo Krzewina
- Bill Ash
- David Clark
- Xiao Yu
- Changgeng Liu
- □ Chun-Min Lo, USF Biophysics
- David Richards, USF Ophthalmology
- Curtis Margo, USF Ophthalmology
- Don Hilbelink, USF Anatomy
- Kendall Morris, USF Physiology
- Zong Ping Chen, UC Irvine
- Enrico Gratton, Bioengineering, UC Irvine
- Roman Castaneda, National University, Medellin, Colombia

outline

- DHM: Digital Holographic Microscopy
- OPU: Optical Phase Unwrapping
- TIRHM: Total Internal Reflection Holographic Microscopy
- DHM of Laser Microsurgery
- □ Some current projects
- Optical Tomography and Topography
- Conclusions

3

outline

DHM: Digital Holographic Microscopy

- OPU: Optical Phase Unwrapping
- □ TIRHM: Total Internal Reflection Holographic Microscopy
- DHM of Laser Microsurgery
- □ Some current projects
- Optical Tomography and Topography
- Conclusions

Holography

- Generation of holographic interference by superposition of object and reference waves
- Reconstruction of holographic image by illumination of the hologram with another reference wave
- □ Real space holography: optical generation & optical reconstruction
- Computer generated holography (CGH): numerical generation & optical reconstruction
- Digital holography (DH): optical generation & numerical reconstruction

digital holography: general geometry

M. K. Kim, "Principles and techniques of digital holographic microscopy," SPIE Reviews 1, 50 (2010).

numerical diffraction : angular spectrum method

Angular spectrum at
$$z = 0$$

 $A(k_x, k_y; 0) = \mathscr{F} \{E_0(x_0, y_0; 0)\} = \iint E_0(x_0, y_0; 0) \exp[-i(k_x x_0 + k_y y_0)] dx_0 dy_0$
Optical wave at $z = 0$
 $E_0(x_0, y_0; 0) = \mathscr{F}^{-1} \{A(k_x, k_y; 0)\} = \iint A(k_x, k_y; 0) \exp[i(k_x x_0 + k_y y_0)] dk_x dk_y$
Optical field at z
 $E(x, y; z) = \iint A(k_x, k_y; 0) \exp[ik_z z] \exp[i(k_x x + k_y y)] dk_x dk_y$
 $= \mathscr{F}^{-1} \{\mathscr{F} \{E_0\} \exp[ik_z z]\}$

angular spectrum method

- plane wave decomposition
- two (2) Fourier transforms
 - one at z = 0, and
 - one at any arbitrary z
- no minimum distance requirement
- 3 peaks for off-axis holography
 - 0-order term: ref. and obj.
 - +/- 1st order: twin image terms
- numerical filtering of angular spectrum to suppress zero-order and twin image
 - noise control

physical filtering by placing an aperture at a Fourier plane of hologram

minimum & maximum distances

Digital Holography & Microscopy Laboratory

9

digital holography procedure

- HH': hologram
- FF: angular (Fourier) spectrum
- multiply propagation factor
- EEa: amplitude image
- EEp: phase image

$$E(x, y; z) = \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ E_0 \right\} \exp[ik_z z] \right\}$$

$$\Rightarrow FFT^{-1} \Rightarrow$$

C.J. Mann, L.F. Yu, C.M. Lo, and M.K. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography". Optics Express, 13: p. 8693-8698 (2005).

outline

DHM: Digital Holographic Microscopy

OPU: Optical Phase Unwrapping

- TIRHM: Total Internal Reflection Holographic Microscopy
- DHM of Laser Microsurgery
- □ Some current projects
- Optical Tomography and Topography
- Conclusions

Unwrapping of 2pi-discontinuities in phase images

Software-unwrapping

- Detection of discontinuities & addition of integer-multiples of 2pi
- Subjective and ambiguous topologies
- □ Very computation intensive: ~5 minutes per image for images presented here

- Optical phase-unwrapping
- □ Two- or three-wavelength interference technique
- Completely deterministic
- Very fast ~100 ms
- Light computational load

Multi-wavelength Digital Holography Apparatus

Dual-wavelength phase imaging digital holography

QPM by DH: - OPU vs. software unwrapping

polished coal particle treated with pyrolysis

(a) amplitude image; phase maps reconstructed with (b) 633 nm and
(c) 532 nm; (d) 3D rendering of the dual-wavelength phase map (vertical scale in microns);
software unwrapped phase maps

reconstructed with (e) 633 nm and (f) 532 nm for comparison. All images are 78x78 microns (256x256 pixels).

(e)

(f)

A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, "Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples". Applied Optics, 47: p. 3203-3210 (2008).

Dual-wavelength PIDH: movie of live rotifer

area = $70\mu m \times 70\mu m$ pixels = 360×360 z = $79 \sim 80\mu m$

C.J. Mann, L.F. Yu, and M.K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy". Biomed. Eng. Online, 5 (2006).

outline

- DHM: Digital Holographic Microscopy
- OPU: Optical Phase Unwrapping

TIRHM: Total Internal Reflection Holographic Microscopy

- DHM of Laser Microsurgery
- □ Some current projects
- Optical Tomography and Topography
- Conclusions

TIRHM: total internal reflection holographic microscopy

- modulation of TIR wavefront by variation of interface
- detection and imaging of modulated wavefront by DH
- quantitative profiling of interface

W. M. Ash, and M. K. Kim, "Digital holography of total internal reflection," Optics Express 16, 9811-9820 (2008).

TIRHM imaging modes

TIRHM Apparatus

- a) Schematic
 - Laser- DPSS Nd: YAG @ 532nm
 - Camera- Sony Firewire CCD
- b) Operational system
- c) Close-up of TIR prism
 - w/ 10x microscope objectives

Amoeba Sample: Time lapse phase imagery

outline

- DHM: Digital Holographic Microscopy
- OPU: Optical Phase Unwrapping
- TIRHM: Total Internal Reflection Holographic Microscopy
- DHM of Laser Microsurgery
- □ Some current projects
- Optical Tomography and Topography
- Conclusions

laser cellular microsurgery apparatus

- □ Nd: YVO4 laser for microsurgery: 0.4uJ/pls, 12ns, 20kHz, 10e9W/cm2
- □ LD for holographic microscopy

Fig. 1. Schematic of the experimental setup. LD is the 675nm laser diode; BS1 and BS2 are beam splitters; Ms are mirrors; S is a shutter; L is a lens; HPF is a high-pass filter for red light.

quantitative phase microscopy of cellular laser microsurgery

□ laser microbeam

- study cell structure and function
- injection of exogenous materials
- free the internal constituents
- study developing organisms—such as in the formation of the nervous system
- reduce the thickness of the zona pellucida layer of the ovum to improve human in vitro fertility

quantitative phase evaluation by DHM during laser incision of red blood cells

DHM movies of laser microsurgery

phase change movie : swelling of chromosomes during ablation, with subsequent recovery after laser is removed.

outline

- DHM: Digital Holographic Microscopy
- OPU: Optical Phase Unwrapping
- TIRHM: Total Internal Reflection Holographic Microscopy
- DHM of Laser Microsurgery
- **Some current projects**
- Optical Tomography and Topography
- Conclusions

Thermal Lensing and Absorption Coefficient

Deformation and Young's Modulus Measurement of Thin Film

143.4 × 107.5 (1024 × 768) -3.142:3.142

143.4 × 107.5 (1024 × 768) -3.142:3.142

2 mm dia x 0.5 mm height brass plate (13.5 mg) on 1 mm thick polyacrylamide film

Applications:

Force measurement of cellular motility
Characterization of polyelectrolyte multilayer film growth for tissue engineering

Young's modulus of polyacrylamide film measured to be 14.5 kN/m2

Digital Gabor holography for particle tracking

Adaptive Optics without wavefront sensor or corrector

Fig. 2: Simulation of DHAO process. Amplitude image are shown in gray scale and phase images (b,c, & e) in blue-white-red color scale, representing the range of phase from -pi to +pi. a) Assumed amplitude pattern on retina; b) phase noise of retinal surface; c) assumed aberration of the eye; d) amplitude of exit field; e) phase of exit field, representing recovered aberration of the eye; f) uncorrected image of retina and g) its detail; and h) corrected image of retina and i) its detail.

Multi-mode contrast generation from a single hologram

Multi-mode contrast generation from a single hologram: a) amplitude contrast; b) quantitative phase contrast; c) dark field; d) Zernike phase contrast; e) DIC; f) spiral DIC.

amplitude contrast

145 x 109.5 (1024 x 768) 0.0001089-0.2807

amplitude contrast

Dark field $1-\delta(f_x, f_y)$

145 x 109.5 (1024 x 768) 0.0006224:0.2971

146 x 109.5 (1024 x 768) 0.000248:0.318

145 x 109.5 (1024 x 768) -0.0006667:0.001049

152.1 x 114.1 (1024 x 768) 0.0001939:0.3405

outline

- DHM: Digital Holographic Microscopy
- OPU: Optical Phase Unwrapping
- □ TIRHM: Total Internal Reflection Holographic Microscopy
- DHM of Laser Microsurgery
- Some current projects

Optical Tomography and Topography

Conclusions

Digital Interference Holography: the process

- acquire a hologram from camera
- calculate 2D optical field array at many equally spaced z-distances
 - this produces 3D volume of optical field for one wavelength
- step the wavelength
 - and calculate another 3D volume of optical field for the new wavelength
- calculate 3D volumes of optical field for many wavelengths
- numerically superpose all 3D volumes of optical field
- □ final single volume of optical field with tomographic peaks

superposition of many wavelengths

 $\Box \quad \text{axial resolution:} \quad \delta = \Lambda/N$

(a) x-y cross-section, FOV=1100 x 1100 μ m²; (b) y-z cross sections at various x values, 1100 x 280.35 μ m², from left to right, x1, x2, and x3; (c) x-z cross sections at various y values, 280.35 x 1100 μ m², from top to bottom, y1, y2, and y3; Z = 29.7 μ m; NX= NY=256 pixels; NZ= 50 pixels; s = the slope; h1, h2: heights.

Digital Holography & Microscopy Laboratory

M.C. Potcoava, C.N. Kay, M.K. Kim, and D.W. Richards, "In vitro imaging of ophthalmic tissue by digital interference holography". Journal of Modern Optics, 57: p. 115-123 (2010).

3D fingerprints by DIH

full-color wide-field OCT by PSIM

OCT: optical coherence tomography

3D fingerprint by PSIM

Dar Ber Arne Den Brate Konne Beb Dar Bei Bei an ar Brate Konne Beb

MC Potcoava & MK Kim, "Fingerprint biometry applications of digital holography and low-coherence interferography," Appl. Opt. 48, H9-15 (2009)

color WFOCT: colored dime

image volume = 7.2mm x 7.2mm x 335um voxels = 480 x 480 x 67 voxel volume = 15um x 15um x 5um

L.F. Yu and M.K. Kim, "Full-color threedimensional microscopy by wide-field optical coherence tomography". Optics Express, **12**: p. 6632-6641 (2004).

Conclusions: Capabilities of DHM

- High resolution quantitative phase microscopy
- □ Single-exposure image capture and numerical focusing
- Versatile manipulation of complex optical fields
 - Numerical focusing
 - Aberration,
 - Wave front curvature, etc.
- Quantitative label-free microscopy of live cellular and intra-cellular structures and processes
- Biomedical tissue tomography: ophthalmology
- Microstructure imaging and testing
- Particle imaging and tracking: cytometry
- Biomaterials characterization
- □ etc. ...

Thank You!

